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K-Selection Rule
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- Conversation of momentum is true for semiconductors: Δp = 0;

- Another way to write it : Δk = 0 so 𝑘0 = 𝑘𝑓𝑖𝑛𝑎𝑙;

What this means for direct bandgap semiconductor

𝐸

𝑘

𝐸, 𝑘
𝐸𝐺𝐴𝑃

1. Energetic requirement for radiative interactions: E > EGAP

2. Conservation of momentum:

𝑘𝐶 = 𝑘𝑉+ 𝑘𝑃ℎ

?

𝑘𝐶 , 𝑘𝑉=
2π

𝑎
≈ 109 − 1010𝑐𝑚−1

𝑘𝑃ℎ =
2π

λ
≈ 104𝑐𝑚−1

For optoelectronic devices we are interested in interactions 
between electrons and photons. Main points:
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K-Selection Rule
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- Conversation of momentum is true for semiconductors: Δp = 0;

- Another way to write it : Δk = 0 in total;

What this means for in-direct bandgap semiconductor

𝐸

𝑘

𝐸, 𝑘
𝐸𝐺𝐴𝑃

1. Energetic requirement for radiative interactions: E > EGAP

2. Conservation of momentum:

For optoelectronic devices we are interested in interactions 
between electrons and photons. Main points:

𝑘𝐶 = 𝑘𝑉+ 𝑘𝑃ℎ+ 𝑘𝑃ℎ𝑜𝑛𝑜𝑛

Phonons have momentum comparable 
to that of electrons in the lattice
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Summary of Optical properties of semiconductors

Direct Semiconductor
(a) Photon absorption in a direct bandgap semiconductor

Indirect Semiconductor
(b) Photon absorption in an indirect bandgap semiconductor assisted by phonon absorption and
(c) Photon absorption in an indirect bandgap semiconductor assisted by phonon emission.
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How to quantify 
these microscopic 

phenomena?
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Applications of Optical properties of semiconductors
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Optical properties of semiconductors

𝐻0 =
𝒑2

2𝑚
+ 𝑉(𝒓)

In presence of an EM field described by a vector potential 𝑨 𝒓, 𝑡 :

𝐻 =
1

2𝑚
𝒑 +

𝑒

𝑐
𝑨 𝒓, 𝑡

2

+ 𝑉 𝒓 = 𝐻0 +
𝑒

𝑚𝑐
𝑨 ⋅ 𝒑 +

𝑒2

2𝑚𝑐2
𝑨2
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Optical properties of semiconductors

𝐻0 =
𝒑2

2𝑚
+ 𝑉(𝒓)

In presence of an EM field described by a vector potential 𝑨 𝒓, 𝑡 :

𝐻 =
1

2𝑚
𝒑 +

𝑒

𝑐
𝑨 𝒓, 𝑡

2

+ 𝑉 𝒓 = 𝐻0 +
𝑒

𝑚𝑐
𝑨 ⋅ 𝒑 +

𝑒2

2𝑚𝑐2
𝑨2
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Perturbation Theory

𝐿 =
1

2
𝑚 𝒗 ⋅ 𝒗 + 𝑒𝑉 +

𝑒

𝑐
𝒗 ⋅ 𝑨 𝑝𝑡𝑜𝑡 =

𝜕𝐿

𝜕𝑣
= 𝑝 +

𝑒

𝑐
𝐴

From the Lagrangian of a charged particle in a EM field, derived directly from Maxwells’ equations
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Optical properties of semiconductors

𝐻0 =
𝒑2

2𝑚
+ 𝑉(𝒓)

In presence of an EM field described by a vector potential 𝑨 𝒓, 𝑡 :

𝐻 =
1

2𝑚
𝒑 +

𝑒

𝑐
𝑨 𝒓, 𝑡

2

+ 𝑉 𝒓 = 𝐻0 +
𝑒

𝑚𝑐
𝑨 ⋅ 𝒑 +

𝑒2

2𝑚𝑐2
𝑨2

For example 𝑨 𝑟, 𝑡 = 𝐴0ො𝒆𝑒
𝑖(𝒒⋅𝒓−𝜔𝑡) + 𝑐. 𝑐. with ො𝒆 ⊥ 𝒒

𝐻 = 𝐻0 +
𝑒𝐴0
𝑚𝑐

𝑒𝑖(𝒒⋅𝒓−𝜔𝑡)ො𝒆 ⋅ 𝒑 +
𝑒𝐴0
𝑚𝑐

𝑒−𝑖(𝒒⋅𝒓−𝜔𝑡)ො𝒆 ⋅ 𝒑

Optical transitions in semiconductors16/05/2022 7

The field is not extremely strong and e^2 is
small, thus this term can be neglected
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Optical properties of semiconductors

𝐻0 =
𝒑2

2𝑚
+ 𝑉(𝒓)

In presence of an EM field described by a vector potential 𝑨 𝒓, 𝑡 :

𝐻 =
1

2𝑚
𝒑 +

𝑒

𝑐
𝑨 𝒓, 𝑡

2

+ 𝑉 𝒓 = 𝐻0 +
𝑒

𝑚𝑐
𝑨 ⋅ 𝒑 +

𝑒2

2𝑚𝑐2
𝑨2

For example 𝑨 𝑟, 𝑡 = 𝐴0ො𝒆𝑒
𝑖(𝒒⋅𝒓−𝜔𝑡) + 𝑐. 𝑐. with ො𝒆 ⊥ 𝒒

𝐻 = 𝐻0 +
𝑒𝐴0
𝑚𝑐

𝑒𝑖(𝒒⋅𝒓−𝜔𝑡)ො𝒆 ⋅ 𝒑 +
𝑒𝐴0
𝑚𝑐

𝑒−𝑖(𝒒⋅𝒓−𝜔𝑡)ො𝒆 ⋅ 𝒑
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Absorbed photon Emitted photon
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Fermi golden rule

𝑊𝑖𝑗 =
2𝜋

ℏ
𝑖 𝐻′ 𝑗 2𝜌(𝐸𝑓)

𝑊𝑖𝑗 is the transition probability per unit time between two quantum states 𝑖, 𝑗

𝜌 𝐸𝑓 is the density of final states. If energy is conserved: 𝜌 𝐸𝑓 = 𝛿(𝐸)

𝐻′ is the perturbation term in the Hamiltonian

𝑖 𝐻′ 𝑗 is the matrix element for the interaction

In our case:

𝑊𝑖→𝑗 =
2𝜋

ℏ

𝑒𝐴0
𝑚𝑐

2

𝜓𝑗 𝑒
𝑖𝒒⋅𝒓ො𝒆 ⋅ 𝒑 𝜓𝑖

2
𝛿 𝐸𝑗 − 𝐸𝑖 − ℏ𝜔

𝑊𝑗→𝑖 =
2𝜋

ℏ

𝑒𝐴0
𝑚𝑐

2

𝜓𝑖 𝑒
−𝑖𝒒⋅ 𝒓ො𝒆 ⋅ 𝒑 𝜓𝑗

2
𝛿(𝐸𝑖 − 𝐸𝑗 + ℏ𝜔)

Absorbed photon

Emitted photon
𝐸𝑖 = 𝐸𝑗 − ℏ𝜔

𝐸𝑗 = 𝐸𝑖 + ℏ𝜔
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Coupling between initial and final states

Density of states in the transition
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Transitions

We have many i,j states from and to which the the transition can happen

The net transition rate from 𝑖 to 𝑗 is given by 𝑊𝑖𝑗 −𝑊𝑗𝑖 . Over all states:

𝑊 =෍

𝑖𝑗

𝑊𝑖𝑗 −𝑊𝑗𝑖

Every state has an occupation probability given by 𝑓 𝐸

To have a transition between i and j, we need occupied i and empty j: 𝑓 𝐸𝑖 [1 − 𝑓 𝐸𝑗 ]

So, we multiply 𝑊𝑖𝑗 by 𝑓 𝐸𝑖 [1 − 𝑓 𝐸𝑗 ] and 𝑊𝑗𝑖 by 𝑓 𝐸𝑗 [1 − 𝑓 𝐸𝑖 ] :

𝑊 =
2𝜋

ℏ

𝑒𝐴0
𝑚𝑐

2

2෍

𝑖𝑗

𝜓𝑗 𝑒
𝑖𝒒⋅ 𝒓ො𝒆 ⋅ 𝒑 𝜓𝑖

2
𝛿(𝐸𝑗 − 𝐸𝑖 − ℏ𝜔) [𝑓 𝐸𝑖 − 𝑓(𝐸𝑗)]
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Considering photons interacting
with a semiconductor, it represents
the net absorption rate
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Transitions

𝑊 =
2𝜋

ℏ

𝑒𝐴0
𝑚𝑐

2

2෍

𝑖𝑗

𝜓𝑗 𝑒
𝑖𝒒⋅ 𝒓ො𝒆 ⋅ 𝒑 𝜓𝑖

2
𝛿(𝐸𝑗 − 𝐸𝑖 − ℏ𝜔) [𝑓 𝐸𝑖 − 𝑓(𝐸𝑗)]

In the limit for T = 0, full VB and empty CB:

𝑊 ~ ෍

occ. 𝑖

෍

free 𝑗

𝜓𝑗 𝑒
𝑖𝒒⋅ 𝒓ො𝒆 ⋅ 𝒑 𝜓𝑖

2
𝛿(𝐸𝑗 − 𝐸𝑖 − ℏ𝜔)

~෍

𝑐𝑣

න
𝐵𝑍

ො𝒆 ⋅ 𝜓𝑐𝒌 𝒑 𝜓𝑣𝒌
2𝛿 𝐸𝑐𝒌 − 𝐸𝑣𝒌 − ℏ𝜔

𝑑𝒌

2𝜋 3
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= 1 at T = 0

we can apply our knowledge on the wavefunctions in the case without
perturbations and solve the calculation of the net absorption rate

Perturbation theory   →
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Joint density of states

The dipole matrix elements are smooth functions of the k-vector. 
Thus, they do not affect much the integral, and can be factorized out.

On the contrary, the main term to determine the behaviour of the calculation is 𝛿 𝐸𝑐𝒌 − 𝐸𝑣𝒌 − ℏ𝜔

Essentially, the integral is controlled by the so-called joint density of states:

𝜌𝑐𝑣 𝜔 = න𝛿 𝐸𝑐𝒌 − 𝐸𝑣𝒌 − ℏ𝜔
𝑑𝒌

2𝜋 3 → 𝜌𝑐𝑣 𝜔 3𝐷 = 2𝜋
2𝑚∗

ℏ2

3
2

ℏ𝜔 − 𝐸𝑔
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Specific case of a direct bandgap semiconductor in 3D
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Dielectric function and transition rate

The total energy per unit time dissipated in the system (volume V) is:

𝑃 𝑞, 𝜔 = ℏ𝜔𝑊 𝑞,𝜔

From Maxwell equations we know that
𝜕𝐷

𝜕𝑡
=
𝜕𝐸

𝜕𝑡
+ 4𝜋𝐽

𝐷 = 𝜖1 + 𝑖𝜖2
𝐽 = 𝜎 ⋅ 𝐸

Also, from general electromagnetism:

𝑃 = න
𝑉

𝐽 ⋅ 𝐸 𝑑𝑟 = න
𝑉

𝜎𝐸 ⋅ 𝐸 𝑑𝑟 = 𝜎 𝐸0
2𝑉

Thus we connect the microscopic description to the macroscopic quantities 𝜎, 𝜖

𝜖 = 1 +
4𝜋𝑖𝜎

𝜔

ℏ𝜔𝑊 =
𝜔

4𝜋𝑖
(𝜖 − 1) 𝐸0

2𝑉
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Absorption coefficient

In the end we find:

𝜖2 𝒒,𝜔 =
2𝜋ℏ𝑐2

𝜔2

1

𝑉

𝑊 𝒒,𝜔

𝐴0
2

𝛼 𝜔 =
2𝜋ℏ𝑐

𝑛 𝜔 𝜔

1

𝑉

𝑊 𝜔

𝐴0
2

𝐼 𝑧 = 𝐼0𝑒
−𝛼(𝜔)𝑧

Familiar macroscopic absorption law
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Absorption coefficient

Direct Bandgap in 3D:
𝛼 ≈ ℎ𝑣 − 𝐸𝐺

Indirect Bandgap:

𝛼 ∝
ℎ𝑣 − 𝐸𝐺 − 𝐸𝑃

2

𝑒
𝐸𝑝
𝑘𝑇 − 1

−
(ℎ𝑣 − 𝐸𝐺 − 𝐸𝑃)

2

1 − 𝑒−
𝐸𝑝
𝑘𝑇

Direct Bandgap is more efficient for photon absorption: MoS2, GaAs, InP…
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